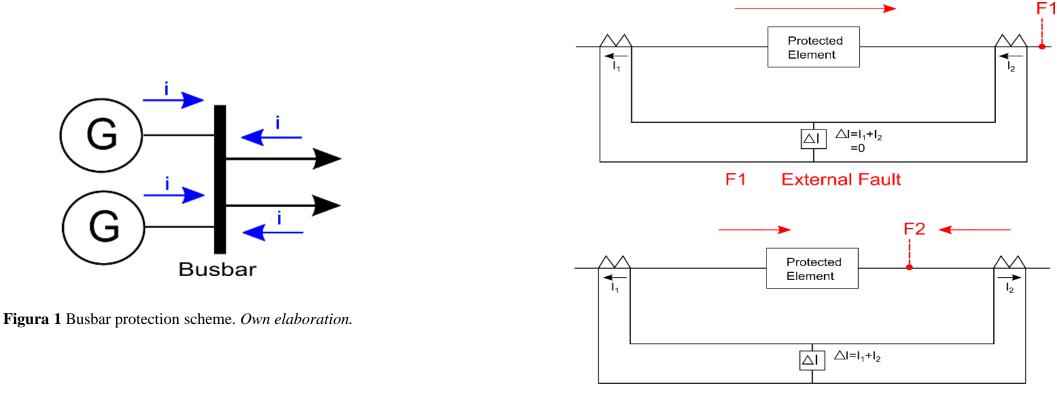


International Interdisciplinary Congress on Renewable Energies, Industrial Maintenance, Mechatronics and Informatics Booklets


RENIECYT - LATINDEX - Research Gate - DULCINEA - CLASE - Sudoc - HISPANA - SHERPA UNIVERSIA - Google Scholar DOI - REDIB - Mendeley - DIALNET - ROAD - ORCID

Title: Development of busbar differential protection algorithm on PSCAD

Authors: SHIH-Meng Yen, LEZAMA-ZÁRRAGA, Francisco Román, CHAN-GONZALEZ, Jorge de Jesús and SALAZAR-UITZ, Ricardo Rubén

Editorial label ECORFAN: 607-8695 BCIERMMI Control Number: 2022-01 BCIERMMI Classification (2022): 261022-0001	Pages: 13 RNA: 03-2010-032610115700-14				
ECORFAN-México, S.C.		Holdings			
143 – 50 Itzopan Street		Mexico	Colombia	Guatemala	
La Florida, Ecatepec Municipality					
Mexico State, 55120 Zipcode	NUMBER OF AND	Bolivia	Cameroon	Democratic	
Phone: +52 55 6159 2296	www.ecorfan.org	Spain	El Salvador	Republic	
Skype: ecorfan-mexico.s.c.					
E-mail: contacto@ecorfan.org		Ecuador	Taiwan	of Congo	
Facebook: ECORFAN-México S. C.					
Twitter: @EcorfanC		Peru	Paraguay	Nicaragua	

Introduction (Differential Protection Concept)

F2 Internal Fault

Figura 2 Differential protection internal and external faults. Own elaboration.

Objectivo

To develop an academic numerical Busbar Differential Protection on PSCAD (Power System Computer Assisted Design) and analyze the operation and behavior of this protection for the different types of faults, whether internal or external.

Justification

The developed Busbar Differential Protection can be used as simulation exercises for the undergraduate engineering students to better comprehend the operation of differential protection when there is an internal or external fault.

Hypothesis

The developed numerical Busbar Differential Protection on PSCAD should be sensitive enough to operate only for internal faults, in this case, faults on busbar. Whereas the algorithm should discriminate and not operate for any external faults whether they are single-phase, double-phase or even three-phase.

Methodology

(4)

$$I_{op_{me}} = |\overline{I_1} + \overline{I_2} + \overline{I_3} \dots \overline{I_n}|$$
(1)

$$I_{rest} = |\overline{I_1}| + |\overline{I_2}| + |\overline{I_3}| \dots |\overline{I_n}|$$
 (2)

$$I_{diff} = 1 A \tag{3}$$

$$I_{op_{cal}} = I_{diff} + k I_{rest}$$

- \rightarrow The measured tripping current
- \rightarrow The restraint current
- \rightarrow The differential current
- \rightarrow The calculated tripping current

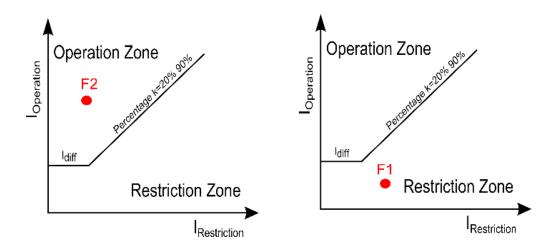


Figura 3 Differential protection characteristics: tripping zone and restraint zone.

Methodology

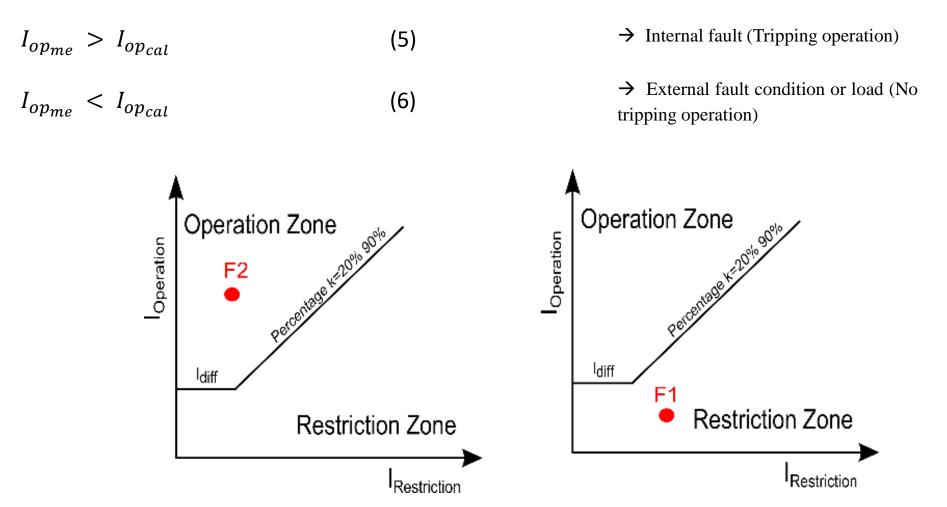
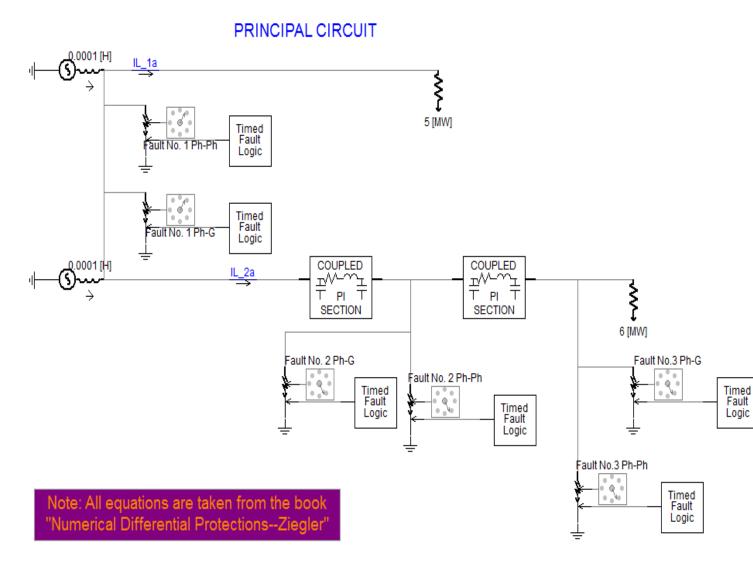



Figura 3 Differential protection characteristics: tripping zone and restraint zone.

Simulación

Parámetros	Valores
Gen 1 and 2	10 MVA
Internal Gen L	0.1 mH
Line 1	< 80 km
Line 2	> 240 km
Load 1	5 MW
Load 2	6 MW

Table 1 Test system data. Own elaboration.

Figure 4 Principal circuit under study in PSCAD.

Simulation

PHASE TO GROUND FAULT CONTROL PANEL

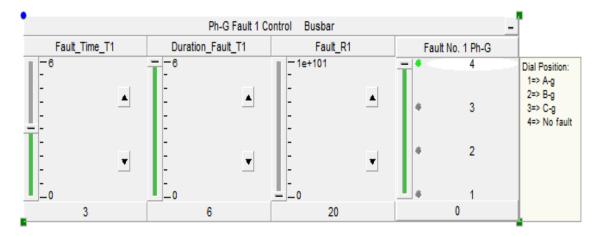
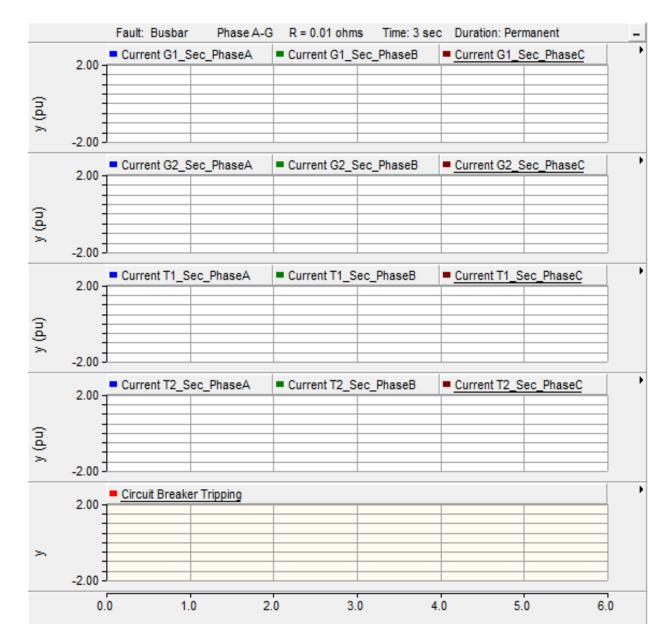


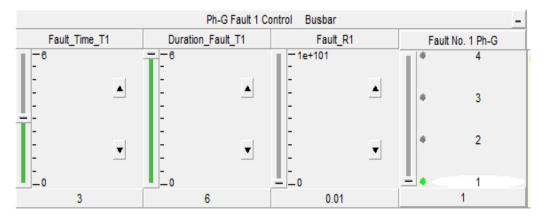
Figure 5 Phase to ground fault control in the protected zone (busbar).

Own elaboration.


PHASE TO PHASE FAULT CONTROL PANEL

F	h-Ph Fault 1 Control Busba	ar <u>–</u>	1
Fault_Time_1	Duration_Fault_1	Fault No. 1 Ph-Ph	1
		* 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 - 1	Dial Position: 1=> no fault (0) 2=> no fault (0) 3=> no fault (0) 4=> AB-g 5=> AC-g 6=> BC-g 7=> ABC-g 8=> AB 9=> AC
3	6	0	10=> no fault (0)

Figure 6 Phase to phase fault control in the protected zone (busbar).


Simulation

CIRCUIT BREAKER TRIPPING

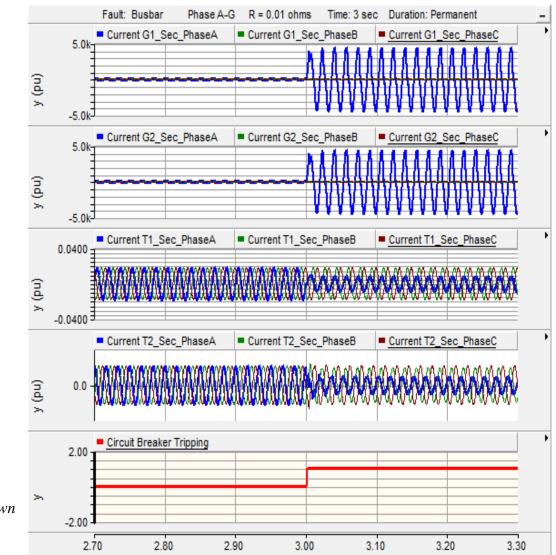


Figure 7 (a) Generator 1 currents. (b) Generator 2 currents. (c) 5 MW load currents. (d) 6 MW load currents. (e) Display of open or closed breakers: a "0" for closed breakers and a "1" for opened breakers.

Results Case 1.- Internal fault of phase A to ground in the principal busbar (R = 0.01ohms).

Figure 8 A-g fault adjustment (0.01 ohms), in the fault control panel.. *Own elaboration*.

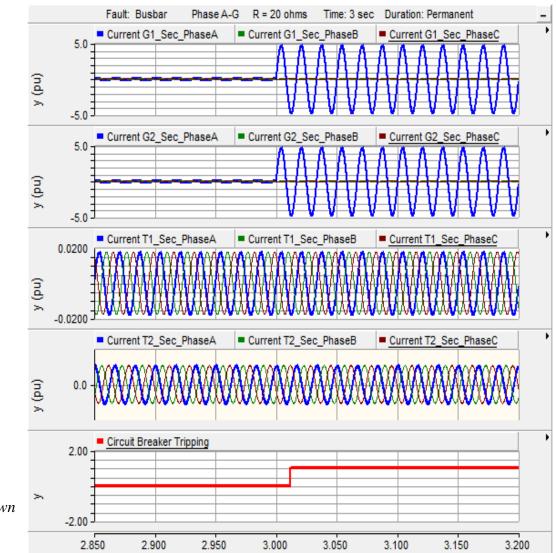


Figure 9 Fault graphs (Phase A-g R = 0.01 ohms). Internal fault. *Own elaboration.*

Results Case 2.- Internal fault of phase A to ground in the principal busbar (R = 20ohms).

Ph-G Fault 1 Control Busbar							
Fault_Time_T	1	Duration	Fault_T1	Fa	ult_R1	Fault N	lo. 1 Ph-G
	•		▲ ▼	- 1e+101 - - - - - - - - -	•	*	4 3 2
0		0		0		<u> </u>	1
3			6		20	1	.00

Figure 10 A-g fault adjustment (20 ohms), in the fault control panel. *Own elaboration*.

Figure 11 Fault graphs (Phase A-g R = 20 ohms). Internal fault. *Own elaboration.*

Results Case 3.- External fault phase A to phase B, distance 250 km.

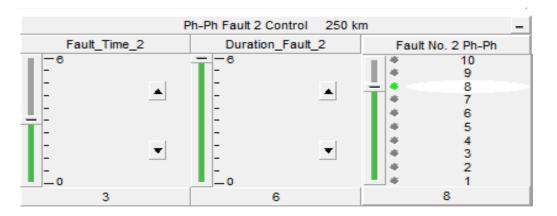


Figure 12 A-B fault adjustment. Own elaboration.

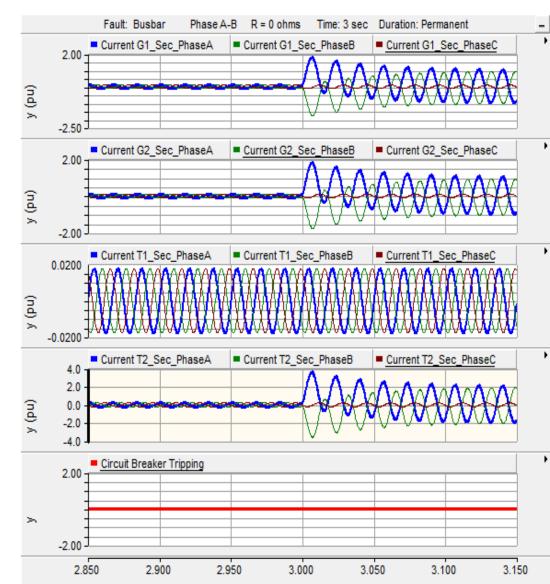


Figure 13 Ph-ph fault graphs (A-B). External fault. Own elaboration.

Conclusions

Differential Protection Overview Responses					
Cases	Internal Fault	External Fault	Protection Operation	Correct	
F=A-g R=0.01	\checkmark		Yes	Yes	
F=A-g R=20	\checkmark		Yes	Yes	
F=A-B 250km		\checkmark	No	Yes	

References

- Blackburn J. L. & Domin T. J. (2006). Protective relaying, principles and applications. (3rd edition). CRC Press Taylor & Francis Group.
- Chen G., Liu Y. and Yang Q. (2020). Impedance Differential Protection for Active Distribution Network, IEEE Transactions on Power Delivery, 35 (1), 25-36. DOI: 10.1109/TPWRD.2019.2919142
- Elmore W. (2003). *Protective relaying theory and applications*. (2nd edition). CRC Press Taylor & Francis Group.
- IEEE/PES Power System Relaying Committee (1979). IEEE Guide for Protective Relay Application to Power System Buses. ANSI/IEEE C37.97-1979. DOI: 10.1109/IEEESTD.2009.5325912
- Kasztenny B. & Finney D. (2005). Generator protection and CT-saturation problems and solutions, IEEE Transactions on Industry Applications, 41 (6), 1452-1457. DOI: 10.1109/CPRE.2005.1430427
- Saleh S. & Ozkop E. (2021). Digital Differential Protection for 3φ Solid-State Transformers, IEEE Transactions on Industry Applications, 57 (4), 3474-3486. DOI: 10.1109/TIA.2021.3072877
- Tavares K. & Silva K (2014). Evaluation of Power Transformer Differential Protection Using the ATP Software, IEEE Transactions on Latin America, 12 (2), 161-168. DOI: 10.1109/TLA.2014.6749533

> Ziegler G. (2005). Numerical Differential Protections, Editorial Siemens.

© ECORFAN-Mexico, S.C.

No part of this document covered by the Federal Copyright Law may be reproduced, transmitted or used in any form or medium, whether graphic, electronic or mechanical, including but not limited to the following: Citations in articles and comments Bibliographical, compilation of radio or electronic journalistic data. For the effects of articles 13, 162,163 fraction I, 164 fraction I, 168, 169,209 fraction III and other relative of the Federal Law of Copyright. Violations: Be forced to prosecute under Mexican copyright law. The use of general descriptive names, registered names, trademarks, in this publication do not imply, uniformly in the absence of a specific statement, that such names are exempt from the relevant protector in laws and regulations of Mexico and therefore free for General use of the international scientific community. BCIERMMI is part of the media of ECORFAN-Mexico, S.C., E: 94-443.F: 008- (www.ecorfan.org/booklets)

© 2009 Rights Reserved | ECORFAN, S.C. (ECORFAN®-México-Bolivia-Spain-Ecuador-Cameroon-Colombia-Salvador-Guatemala-Paraguay-Nicaragua-Peru-Democratic Republic of Congo-Taiwan)